Status-Quo
Heute werden die meisten Rahmen noch immer aus Metall und noch immer als Schweißkonstruktion produziert. Rohre kombiniert mit Fräs-, Schmiede- oder Blechteilen; fertig ist der Rahmen – zumeist in Diamantform. Im Highend-Bereich gibt es natürlich schon seit vielen Jahren Carbonrahmen und unter diesen viele verschiedene Herstellungsverfahren. Fest steht: Der aktuelle Status funktioniert – Jahr für Jahr werden schließlich Millionen Fahrradrahmen produziert. Doch es gibt gute Gründe, dass sich in Zukunft einiges ändern wird.
Probleme
Das offensichtlichste Manko der etablierten Prozesse hat die Coronakrise offengelegt: Die Lieferketten sind lang und empfindlich. Viele beteiligte Firmen, die Kleinteiligkeit, die Transportwege – hier kann an vielen Stellen etwas schiefgehen, was dann dazu führt, dass das Produkt nicht zum Saisonstart in der gefragten Menge verfügbar ist. Eine Reaktion auf steigende Nachfrage ist mit großer Trägheit verbunden.
Das Thema Kosten darf ebenfalls nicht unterschätzt werden: Die zunehmende Elektrifizierung von Antrieb, aber auch Fahrwerk und „smarten“ Funktionen für den Diebstahlschutz oder die Crash-Erkennung bedeuten steigende Kosten für die Komponenten. Gleichzeitig kann der Preis für das Gesamtprodukt nicht beliebig steigen. Es gilt also zu sparen, wo nur möglich.
Auch wenn die Fahrradbranche sich bisher in weiten Teilen verhält, als wäre ihr Produkt ein Freifahrtschein beim Thema Nachhaltigkeit: Früher oder später reicht es nicht, ein lokal emissionsfreies Produkt zu verkaufen. Auch die Fahrradbranche muss sich Gedanken machen, aus welchen Materialien, mit welchen Emissionen und mit welchen Recyclingmöglichkeiten ihr Produkt produziert wird. Allem Greenwashing zum Trotz gibt es für moderne Carbonrahmen keine Recyclingmöglichkeit. Im besten Fall wird downgecycelt, beispielsweise die Matrix verbrannt und die Faserschnipsel irgendwo als drittklassige Verstärkung verwendet.
Lösungsansätze
Wie also werden in Zukunft flexibel, günstig und nachhaltig Fahrradrahmen produziert? Einen Rahmen aus dem Vollen zu fräsen (wie es beispielsweise Actofive oder Pole tun) ist sicher nicht die richtige Lösung; auch dann nicht, wenn der Strom für die Fräse aus Wasserkraft kommt. Auch die additive Fertigung wird hier vielfach überschätzt, sie eignet sich bisher nur sehr bedingt für „günstig und nachhaltig“ bei den benötigten Stückzahlen.
Aller Wahrscheinlichkeit nach wird die Lösung in der Automatisierung liegen. Reduzierte Lohnkosten, Produktion 24 Stunden am Tag, 7 Tage die Woche und gleichbleibende Qualität: Kein Wunder, dass es schon heute viele Automatisierungsaktivitäten auch in der Fahrradbranche gibt. Fertigungsverfahren oder Prozessschritte, die sich schlecht automatisieren lassen, werden entfallen müssen. Mehrere hundert kleine Kohlefaserschnipsel in verwinkelte Geometrien stückeln, bis irgendwann ein Fahrradrahmen entstanden ist? Für einen Roboter schwierig und in jedem Fall zeitaufwändig.
Auch die Verwendung von Prepreg-Materialien, also mit Harz imprägniertem Carbon, wird sich für die breite Masse wohl nicht beibehalten lassen: Die Kosten, die klebrigen Schnipsel, der anfallende Sondermüll, die geringe Haltbarkeit im Kühlraum – das wird sich auf Dauer nur der Motorsport oder die Kleinserie leisten.
3T: Wickeln und Injizieren
Schon heute zeigt beispielsweise 3T, wie die Produktion hochwertiger Carbonrahmen in Italien stattfinden kann. Die trockenen Fasern werden zu Rohren gewickelt – das geht automatisch und mit weniger Abfall. Anschließend werden die Fasern mit Harz infiltriert, im gleichen Verfahren, in dem BMW in den letzten Jahren 250.000 Fahrzeuge vom Modell i3 gebaut hat. In diesem Prozess bleibt übrigens auch das Werkzeug heiß, ein ständiges Heizen und Abkühlen, wie bisher, entfällt, was signifikante Energieeinsparung bedeutet!
Durch eine immer noch hohe Teiligkeit kann 3T seine Rahmen trotz radikal anderer Produktionsweise noch wie gewohnt aussehen lassen. Wer noch weiter automatisieren will, noch schneller, noch günstiger produzieren, der muss das Produkt stark der Produktionsweise anpassen. Wenn Fahrradrahmen nicht mehr aus vielen Einzelteilen hergestellt werden müssten, sondern in einem Schuss entstehen könnten, dann hätte das ein riesiges Potenzial hinsichtlich der Kosten. Ohne manuellen Aufwand und möglichst direkt vom Halbzeug oder aus dem Ausgangsmaterial in die endgültige Form – dann braucht es nur noch ein wiederverwertbares Material und wir nähern uns unserer Vision von der kurzen Lieferkette, dem niedrigen Preis und der Kreislaufwirtschaft.
Isoco: Spritzguss
Konkret ist hier Spritzguss die greifbarste Vision: Durch Faserverstärkung kann die Performance von Kunststoff verbessert werden, durch Schieber und in Fluidinjektionstechnik lassen sich immer komplexere Formen bauen. Der Vorteil: Die Rahmen werden sehr schnell, in einem Schuss hergestellt. Konkret gibt Akro-Plastics die Produktionsdauer eines Rahmens mit 90 Sekunden an. Die Werkzeuge und die Prozesstechnik sind zwar nicht günstig, danach läuft die Produktion aber weitestgehend ohne manuellen Aufwand. Dadurch kann die Produktion an beliebigem Ort stattfinden, zum Beispiel auch in Deutschland – denn die hier höheren Lohnkosten wirken sich kaum auf den Preis des Produktes aus. Das könnte wiederum die Lieferkette verkürzen und die Flexibilität erhöhen. Das so hergestellte Advanced Reco One ist offensichtlich so robust ausgelegt, dass der Hersteller 30 Jahre Garantie geben will. Am Lebensende kann das Material dann geshreddert und wieder im selben Prozess verarbeitet werden; da nie lange Fasern verwendet wurden, ist die Degradation viel geringer als beim Status quo. Die CO2-Emissionen während der Produktion sollen ebenfalls nur die Hälfte betragen, eine Zahl, die schwierig zu prüfen ist.
Video: Isoco Bikes – Full Production Process
Für alle Nerds: Die Firma V Frames ist eine Tochter von Isoco – gemeinsam hat man mit dem Materialhersteller Akro-Plastic und dem Spritzgießmaschinenhersteller Engel den Prozess samt Material befähigt. Verwendet wird PA-CF40, also ein Thermoplast mit 40 % Kohlenstofffaser. Das ist hoch, aber geringer als bei Prepreg-Rahmen, wo in der Regel 55 – 65 % erreicht werden. Die Kohlefasern sind rezyklierte Ware, die Schließkraft der Maschine beträgt 17000 kN (!). Metallische Inserts sorgen für eine dauerhafte Verbindung, die Produktionskapazität in Deutschland beträgt 3 Millionen (!) Rahmen pro Jahr. Das Urban E-Bike ist der Anfang – Mountainbikes, Kinderräder und Lastenräder befinden sich laut Engel in Entwicklung.
Die schiere Performance wird dabei sicherlich nicht so gut wie bei Rahmen mit Langfaserverstärkung und verlorenem Kern (also dem Status quo). Das erwähnte Urban-E-Bike bringt es auf 28,6 kg. Doch die Frage ist: Kann eine gewisse Einbuße bei Steifigkeit und Gewicht toleriert werden? Kaufen Kunden gerade überhaupt noch nach Steifigkeit oder Gewicht? Sind Fahrräder nicht seit Jahren immer schwerer geworden, haben sich dank Funkschaltung und Co. aber weiterhin verkauft? Ich gehe davon aus, dass es die auf maximale Performance getrimmten Modelle immer geben wird – diese aber wie Sportwagen unter Autos die Ausnahme von der Regel darstellen. Eine bessere Performance wird durch höheren Preis und schlechtere Nachhaltigkeit erkauft. Das Standard-Modell aber, der Carbonrahmen für die Masse, der wird aller Wahrscheinlichkeit nach nicht mehr lange von Hand aus Duroplasten gebaut – und das ist gut so!
Fazit
Höhere Automatisierung wird es zunehmend erlauben, Fahrradrahmen in Europa oder Nordamerika herzustellen. Durch die Verwendung anderer Herstellungsverfahren sinkt der manuelle Aufwand, im besten Fall auch die Emission von Treibhausgasen und die Kosten. Das Design wird sich durch die Herstellungsverfahren ändern, und im Idealfall werden Rahmen sowohl langlebig als auch recycelbar.
Worauf kommt es euch beim Rahmen der Zukunft besonders an?
3 Kommentare
» Alle Kommentare im ForumWie werden Fahrradrahmen aus Carbon in Zukunft produziert? Hoffentlich mit geringerem Energieaufwand und besser recycelbar als heute.
Den vollständigen Artikel ansehen:
Dreh-Momente — Radtechnik im Fokus: Fahrradrahmen-Produktion der Zukunft
Bei allem Respekt für die technische Leistung der Firma Isoco... aber...
Das mag jetzt eine Milchmädchenrechnung sein und ich bin nicht fit was E-Bikes angeht, aber ein vergleichbares (???) Cube Relate 8.0 625 wiegt lt. HP von Radon 25.1 kg. Ganz grob geschätzt würde das Mehrgewicht für den Isoco Rahmen dann 28.6 kg - 25.1 kg = 3.5 kg sein?
Das mag ja bei einem E-Bike noch akzeptabel sein, aber bei Räder mit ohne Unterstützung?
Ich tu mir tatsächlich schwer, den Markt dafür zu sehen. So grosse Produktionskapazitäten für standardisierte Fahrräder gibt’s zumindest im Moment nicht. Könnte mir eher vorstellen, dass die Technik im Automobilbau Einzug hätt. Tesla gießt schon den ganzen Vordewagen des Model Y am Stück. Mit faserverstärktem Thermoplast könnte man hier evtl Potenziale heben und es passt besser zu den Stückzahlen.
Mag ja sein, dass in Deutschland jedes Jahr Millionen von Rädern verkauft werden, das verteilt sich aber auf tausende von verschiedenen Modellen von hunderten Herstellern, mit zig Varianten in jeweils mehreren Grössen.
Und in einer „Weltfabrik“ ein Standard-Bike herzustellen, um es dann in den Globus zu schiffen….na ich weiss nicht.
Ich stimme beiden vorherigen Posts zu, gerade die filigranen Rahmenformen von Rädern ohne E-Antrieb eignen sich nur sehr eingeschränkt für Spritzguss mit faserverstärkten Thermoplasten. Das Thema Verzug ist dabei auch nicht zu verachten, sowie Kontaktkorrosion an den Inserts bei hohen CF-Füllgraden.
Und zum Thema Milchmädchenrechnung s. Bild 9:
"17.000 kN beträgt die Schließkraft der Anlage - das entspricht dem Gewicht von 425 LkW."
17.000 kN = 1733t geteilt durch 425 LKW sind ca. 4t pro LKW. Sozusagen Leichtbau-LKW.
Wir laden dich ein, jeden Artikel bei uns im Forum zu kommentieren und diskutieren. Schau dir die bisherige Diskussion an oder kommentiere einfach im folgenden Formular: